Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell and are found in the brain of all vertebrates. While traditionally viewed as being supportive of neurons, it is increasingly recognized that astrocytes play a more direct and active role in brain function and neural computation. On account of their sensitivity to a host of physiological covariates and ability to modulate neuronal activity and connectivity on slower time scales, astrocytes may be particularly well poised to modulate the dynamics of neural circuits in functionally salient ways. In the current paper, we seek to capture these features via actionable abstractions within computational models of neuron-astrocyte interaction. Specifically, we engage how nested feedback loops of neuron-astrocyte interaction, acting over separated time-scales, may endow astrocytes with the capability to enable learning in context-dependent settings, where fluctuations in task parameters may occur much more slowly than within-task requirements. We pose a general model of neuron-synapse-astrocyte interaction and use formal analysis to characterize how astrocytic modulation may constitute a form of meta-plasticity, altering the ways in which synapses and neurons adapt as a function of time. We then embed this model in a bandit-based reinforcement learning task environment, and show how the presence of time-scale separated astrocytic modulation enables learning over multiple fluctuating contexts. Indeed, these networks learn far more reliably compared to dynamically homogeneous networks and conventional non-network-based bandit algorithms. Our results fuel the notion that neuron-astrocyte interactions in the brain benefit learning over different time-scales and the conveyance of task-relevant contextual information onto circuit dynamics.more » « less
- 
            Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called ‘network control theory for python’. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.more » « less
- 
            In this paper we study cluster synchronization in networks of oscillators with heterogenous Kuramoto dynamics, where multiple groups of oscillators with identical phases coexist in a connected network. Cluster synchronization is at the basis of several biological and technological processes; yet the underlying mechanisms to enable cluster synchronization of Kuramoto oscillators have remained elusive. In this paper we derive quantitative conditions on the network weights, cluster configuration, and oscillators' natural frequency that ensure asymptotic stability of the cluster synchronization manifold; that is, the ability to recover the desired cluster synchronization configuration following a perturbation of the oscillators' states. Qualitatively, our results show that cluster synchronization is stable when the intra-cluster coupling is sufficiently stronger than the inter-cluster coupling, the natural frequencies of the oscillators in distinct clusters are sufficiently different, or, in the case of two clusters, when the intra-cluster dynamics is homogeneous. We illustrate and validate the effectiveness of our theoretical results via numerical studies.more » « less
- 
            Mathematical theories and empirical evidence suggest that several complex natural and man-made systems are fragile: as their size increases, arbitrarily small and localized alterations of the system parameters may trigger system-wide failures. Examples are abundant, from perturbation of the population densities leading to extinction of species in ecological networks [1], to structural changes in metabolic networks preventing reactions [2], cascading failures in power networks [3], and the onset of epileptic seizures following alterations of structural connectivity among populations of neurons [4]. While fragility of these systems has long been recognized [5], convincing theories of why natural evolution or technological advance has failed, or avoided, to enhance robustness in complex systems are still lacking. In this paper we propose a mechanistic explanation of this phenomenon. We show that a fundamental tradeoff exists between fragility of a complex network and its controllability degree, that is, the control energy needed to drive the network state to a desirable state. We provide analytical and numerical evidence that easily controllable networks are fragile, suggesting that natural and man-made systems can either be resilient to parameters perturbation or efficient to adapt their state in response to external excitations and controls.more » « less
- 
            A broad class of natural and man-made systems exhibits rich patterns of cluster synchronization in healthy and diseased states, where different groups of interconnected oscillators converge to cohesive yet distinct behaviors. To provide a rigorous characterization of cluster synchronization, we study networks of heterogeneous Kuramoto oscillators and we quantify how the intrinsic features of the oscillators and their interconnection parameters affect the formation and the stability of clustered configurations. Our analysis shows that cluster synchronization depends on a graded combination of strong intra-cluster and weak inter-cluster connections, similarity of the natural frequencies of the oscillators within each cluster, and heterogeneity of the natural frequencies of coupled oscillators belonging to different groups. The analysis leverages linear and nonlinear control theoretic tools, and it is numerically validated.more » « less
- 
            In this paper we study cluster synchronization in a network of Kuramoto oscillators, where groups of oscillators evolve cohesively and at different frequencies from the neigh- boring oscillators. Synchronization is critical in a variety of systems, where it enables complex functionalities and behaviors. Synchronization over networks depends on the oscillators’ dynamics, the interaction topology, and coupling strengths, and the relationship between these different factors can be quite intricate. In this work we formally show that three network properties enable the emergence of cluster synchronization. Specifically, weak inter-cluster connections, strong intra-cluster connections, and sufficiently diverse natural frequencies among oscillators belonging to different groups. Our approach relies on system-theoretic tools, and is validated with numerical studies.more » « less
- 
            Synchronization is crucial for the correct functi- onality of many natural and man-made complex systems. In this work we characterize the formation of synchronization patterns in networks of Kuramoto oscillators. Specifically, we reveal conditions on the network weights, structure and on the oscillators’ natural frequencies that allow the phases of a group of oscillators to evolve cohesively, yet independently from the phases of oscillators in different clusters. Our conditions are applicable to general directed and weighted networks of heterogeneous oscillators. Surprisingly, although the oscillators exhibit nonlinear dynamics, our approach relies entirely on tools from linear algebra and graph theory. Further, we develop a control mechanism to determine the smallest (as measured by the Frobenius norm) network perturbation to ensure the formation of a desired synchronization pattern. Our procedure allows us to constrain the set of edges that can be modified, thus enforcing the sparsity structure of the network perturbation. The results are validated through a set of numerical examples.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available